Protective versus pathologic pre-exposure cytokine profiles in dengue virus infection

Friberg H, Beaumier CM, Park S, Pazoles P, Endy TP, Mathew A, Currier JR, Jarman RG, Anderson KB, Hatch S, Thomas SJ, Rothman AL

PLoS Negl Trop Dis 2018 Dec;12(12):e0006975

PMID: 30557313


BACKGROUND: Hyperendemic circulation of all four types of dengue virus (DENV-1-4) has expanded globally, fueling concern for increased incidence of severe dengue. While the majority of DENV infections are subclinical, epidemiologic studies suggest that type-cross-reactive immunity can influence disease outcome in subsequent infections. The mechanisms controlling these differential clinical outcomes remain poorly defined.

METHODOLOGY/PRINCIPAL FINDINGS: Blood samples were collected from a cohort of school-aged Thai children who subsequently experienced a subclinical DENV infection or developed dengue illness. PBMC collected prior to infection were stimulated in vitro with DENV and the secretion of 30 cytokines was measured using a multiplexed, bead-based array. Significant differences were found in cytokine production based on both the type of DENV used for stimulation and the occurrence of clinical illness. Secretion of IL-15 and MCP-1 was significantly higher by PBMC of subjects who later developed symptomatic DENV infection. In addition, IL-6 was produced by PBMC from all subjects who subsequently developed symptomatic infection, versus 59% of subjects who had subclinical infection. Secretion of IL-12, IL-2R, MIP-1α, RANTES, GM-CSF, and TNFα was significantly lower by PBMC from subjects with symptomatic infection.

CONCLUSIONS/SIGNIFICANCE: These data demonstrate significant differences in pre-existing immune responses to DENV associated with the clinical outcome of subsequent infection. The finding of higher levels of some cytokines in subjects with symptomatic infection and higher levels of other cytokines in subjects with subclinical infection supports the existence of both protective and pathologic immune profiles. Clinical-immunological correlations identified in the context of natural DENV infection may be useful for evaluating immune responses to dengue vaccines.